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in the following manner:

H H
v{ y} + [M][ ”} = [S] (107)
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Introduce the following transformation:
H
[ y}= [T][%:l. (110)
P 12

The substitution of (110) in (107) and the premulti-
plication by the inverse matrix [7°] leads to

Radial-Line Coaxial Filters

B. C. De LOACH,

Summary—Design techniques and a simple empirical formula
for the design of band rejection radial-line coaxial filters are pre-
sented. The appropriateness of these filters for parametric work is
discussed and a particular structure employing these filters to pro-
vide a high performance harmonic filter structure for rectangular
waveguide is presented.

I. INTRODUCTION
SEVERAL requests for “further information” on

radial-line coaxial filters followed the presentation

of a paper! at the 1961 International Solid State

Circuits Conference. This paper is a response to those

requests and is intended to provide a practical design
technique for the realization of these filters.

The design of coaxial filters in the microwave region

above a few gigacycles has not received much attention
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If the matrix [7'] is chosen in such a way as to diag-

onalize [ M], the following two uncoupled wave equa-
tions are obtained:

Enmo® O
LT
302 0 kmp2
where kne® and k,,2 the eigenvalues of [M], are given
by the roots of the equation

(1 — BN — (ka2 + EHN + k22 = 0.

121

%} = [7]s] (112)

(113)

From (113) it is clear that kn¢* and k,,® are respectively
the same as given in (38) and (39). The evaluation of
the inverse matrix [7°|~! vyields the source term on the
left-hand side of (112). Since the source terms are delta
functions, the solutions are obviously Hankel functions.
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in the past due to the popularity of rectangular wave-
guide for use at these frequencies. Coaxial filters in this
frequency range have become increasingly important of
late, however, due in large part to the advent of multi-
ple frequency circuits employing coaxial lines (often in
conjunction with other types of waveguides) which
have come about through the application of solid-
state art to microwave problems. Parametric amplifiers
and frequency multipliers (or dividers) in particular
have stringent filtering requirements for which coaxial
filters of the type to be discussed in this paper seem
particularly appropriate.

In addition, harmonic band rejection filters in rec-
tangular waveguide structures are difficult to design for
very good fundamental frequency performance and
are often rather poor in their filtering response for one
or more of the several harmonic waveguide modes that
may be present. The problems associated with these
filters can be avoided by accomplishing the filtering in a
coaxial line and employing two rectangular wave-guide-
to-coaxial line transducers.
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I1. Taeory

We will limit our discussion to one particular type
of band rejection coaxial filter known as a radial-line
filter as depicted in Fig. 1. This filter is shown having a
teflon dielectric radial-line section and air dielectric

coaxial lines. Teflon dielectric coaxial lines have also -

been employed.

First we direct our attention to the choice of a and b.
Perhaps the most stringent requirement on these
parameters is that they not allow multimoding in the
coaxial line in the range of frequencies to be rejected.
It can be shown? that multimoding is possible for values
of (e+40b) greater than or equal to that given by

K\
at+b=—

v

with 092 < K < 1.02 (1)

with K a function of the impedance of the coaxial line.

By requiring that the loss of the coaxial line be
minimized subject to (1) (where K is approximated by
unity), we obtain® a ratio b/a =4.68 which corresponds
to a 92.6 Q coaxial line if air dielectric is employed
(see Appendix). A plot of a,/@, min vs b/a with a-+b held
constant is presented in Fig. 2. «, is that part of the
coaxial line loss (in nepers per meter) that depends
upon the choice of b/a. & min is the value of a, when
b/a=4.68. It can be seen that the minimum is a broad
one and that from the minimum loss standpoint the
choice of b/a is not critical.t

To summarize, a and b are determined from condition
(1), <.e., the sum a-+b is kept less than the value specified
by (1), and from b/a=4.68 in the absence of external
requirements not herein considered.

We now wish to determine ¢ and » for the radial line
cavity of Fig. 1. Schelkunoff® has done theoretical work
on the determination of the resonant frequency of
cylindrical cavity resonators. He treats two specific
cases of interest. The first, Fig. 3(a), is that of two
coaxial conducting cylinders bounded by conducting
planes perpendicular to their axes. The second, Fig.
3(b), is identical except that the inner conducting
cylinder is replaced by an open circuit. Schelkunoff
obtains their respective resonant frequencies from the
equations

Jo(8b) Jo(Br)

_ (22)
No(Bb)  No(Br)
T2(88) _ Jolfr), (2b)
Nu(Bb)  No(8r)

2 C. G. Montgomery, R. H. Dicke, and E. M. Purcell, “Principles
of Microwave Circuits,” McGraw-Hill Book Co., Inc., New York,
N. Y., p.42; 1948.

3 G. L. Ragan, “Microwave Transmission Circuits,” McGraw-
Hill, Book Co., Inc., New York, N. Y., pp. 146-147; 1948.

4 The common minimum loss ratio® of 3.6 based on the fixing of
the outer conductor diameter does not apply here and in fact, would
yield 1.02 times as much loss in nepers per meter as the 4.68 ratio.

5 S. A. Schelkunoff, “Electromagnetic Waves,” D. Van Nostrand
Co., Inc., New York, N. Y., ch. 8; 1943.
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Fig. 1—Radial-line coaxial filter (cutaway).
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Fig. 2—Dependence of loss on the ratio of b to a.
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Fig. 3—Two configurations treated by Schelkunoff.
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Obviously the radial-line coaxial filter that we are
treating fits neither of these cases exactly; however,
by making an arbitrary choice of t=2M\,;,/10 for all our
filters, with M., the wavelength to be rejected, we find
that (2b) more closely approximates our experimental
observations than does (2a).

From an observation of the experimental wvalues
presented in this paper, and from others (which for
brevity have been deleted), the relation

Aa

5 3)

2r=(a+0b) +

has been found to closely approximate the correct value
of » for given a, b, and A.., under the conditions
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t=Nai/10, and the use of teflon in the radial-line sec-
tion as shown in Fig. 1. Its simplicity makes it an at-
tractive alternate to (2b) and its application and ac-
curacy will be discussed in Section III.

I1I. EXPERIMENT

Our experimental realization of these radial-line
filters is accomplished as follows:

1) a and b are chosen from the requirements that
b/a=4.68, and that a+b=C,. C;is a constant and
is a fractional part of the sum a-5 given by (1)
(see Appendix).
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11.08 Ge for all these filters.

Experiment Two: To examine the effect of the radius
of the outer conductor of the coaxial line on the resonant
frequency, a series of filters was fabricated, all of which
had 2¢=0.031 in, 27 =0.640 in, =0.125 in, teflon di-
electric coaxial line and radial line, but with different
values of b. The results are presented in Fig. 6. Egs.
(2b) and (3) are also plotted for this case. Eq. (3) is
seen to yield excellent results except for values of b
very near to a.

Experiment Three: Three sets of coaxial filters were
fabricated which had the following properties:

Coaxial-line Radial-line Frequency for
2 q y
Set ’ 2a 26 t dielectric dielectric which £=Xys/10
1 0.031 in 0.193 in 0.125 in teflon teflon 9.44 Gc
2 0.131 in 0.302 in 0.125in air teflon 9.44 Ge
3 0.050 in 0.234 in 0.062 in air teflon 19.0 Ge

2) tis determined by #=»\,;;/10 for the frequency to
be rejected.

Teflon dielectric is employed in the radial line
section and either air or teflon dielectric is chosen
for the coaxial line.

A theoretical estimate is made for r from (3) (or
from (2b)).

The correct value of r is determined experi-
mentally by constructing filters employing a
scatter of values of 7 about the theoretical predic-
tion.

3)

4)

5)

To examine the effect of our choice of {=X\,i;/10 upon
the resonant frequency of these filters, a set was con-
structed (electroformed), all of which had 2¢=0.031 in,
2b=0.640 in, teflon dielectric radial line and coaxial
lines, but different values of {. The results are presented
in Fig. 4.

The limitations inherent in the application of Schel-
kunoff’s equation (2b) are obvious in that it is inde-
pendent of ¢ while the resonant frequency obviously
is not. The predicted point of our empirical relation is
shown for £=DMX.;/10=0.106 in. It is in error by ap-
proximately 1.5 per cent. It is seen that (3) should give
good results as long as ¢ is reasonably close to A.ir/10.
The following three experiments were performed to
try to determine the extent of the applicability of (3).

Experiment One: A filter was electroformed which
had 2¢=0.031in, 26=0.193in, {=0.125in, 2r =0.645 in,
teflon dielectric coaxial line and radial lines. The hole in
the teflon dielectric was then enlarged to accommodate
a center conductor of first 0.062-in diameter and then
0.125-in diameter. The resonant frequency was de-
termined in each case and the results are presented in
Fig. 5. The linear relation expressed by (3) is included
and is seen to be a reasonably good approximation,
and to be in error by approximately 2.0 per cent at the
highest frequency measured. It should perhaps be
emphasized that Schelkunoff’s equation (2b) is inde-
pendent of ¢ and would predict a resonant frequency of

but which had different values of 7. All three sets of
filters will be observed to satisfy condition (1), 7.e., the
sum a-+b is less than that specified by Eq. 1. while the
third set in addition employs a minimum loss coaxial
line. The results are presented in Figs. 7-9 and include
plots of (2b) and (3). Strictly speaking, (3) is to be
employed only at f=2A,;/10, but as is obvious from Fig.
4, it should be a reasonably good estimate in the
vicinity of A\ui./10 and is indeed observed to be so in
Figs. 7-9, as it was in Figs. 5 and 6.

Removal of the teflon dielectric from the coaxial lines
of the filters of Set 1 lowered each resonant frequency
by approximately 70 Mc. Schelkunoff’s relation (2b)
is seen to give excellent results in Sets 1 and 2, but poor
results for Set 3.

Radial-line coaxjal filters have very “sharp” band
rejecting properties. If, however, the rejection band-
width is too narrow, one can greatly enhance it through
the simple expedient of “stacking” two or more filters
in series along a coaxial line. The responses of one-,
two-, and three-section filters of this type are presented
in Fig. 10. Inappropriate spacing can deteriorate the
band rejection properties remarkably. The transmis-
sion characteristics for a range of spacings of a two-
section filter are presented in Fig. 11. If the reflecting
plane of a given filter section (at the resonant fre-
quency) were at the center of the section, we would

expect #\/2 (n=1, 2, 3, - - - ) spacing to be appropriate.
This, however, is not the case, and indeed for the filters
of Fig. 11, 2n+1)A/4 (=0, 1, 2, - - - ) is a much better

estimate of the correct spacing. The variation of the
position of the reflecting plane with the dimensions of
the filter section can only be very crudely estimated at
present, and it is felt that the correct spacing for a
given filter design should be determined experimentally
with the (2n-+1)A/4 spacing a good first estimate in
the majority of cases.

The sharpness of the band rejection characteristic
has one interesting and useful consequence. At half the
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Fig. 12—Waveguide harmonic filter utilizing radial-
line filter and two transducers.

band rejection frequency they are almost reflectionless
with return losses of those measured (of Type 3) in ex-
cess of 30 db. This makes filters of this type ideally
suited for multiple frequency circuits which are com-
monly encountered in parametric amplifier and mixer
work.

One particular embodiment of a harmonic filter for
use in such circuits was constructed as follows:

Mumford® has given an experimental procedure which
was followed to broad-band a transition from 0.400 in
% 0.900 in waveguide to a coaxial line with 2¢=0.050
in, 26=0.234 in and with air dielectric. A two-section
coaxial filter with teflon dielectric radial line and air
dielectric coaxial lines with these dimensions, designed
to band reject at 23.1 Ge, (see Fig. 9), was inserted
between two of these transducers with trimmer tuning
screws provided as shown in Fig. 12. The X-band return
loss of this combination was greater than 40 db from
10.7 to 11.7 G, and the transmission loss over this range
was 0.1 db. The K-band transmission loss was greater
than 60 db over a 1-Gc band centered around 23.1 Ge.
This is better than one might expect from extrapola-
tion of the curves of Fig. 10 and is probably due to the
fact that considerable mismatch occurs in the coaxial-
to-waveguide transducers for the band rejection fre-
quencies.

IV. DiscussioN

The experimental work presented had as its objective
appropriate design criteria for radial-line coaxial band
rejection filters. The effects of the different parameters
upon the resonant frequency of these filters were in-
vestigated, and a particularly simple empirical formula
was presented for radial-line coaxial filters employing
teflon dielectric.

The full range of application of this formula is not
known although it has been singularly successful in
giving approximate values of filter diameter 2r under

6 W. W. Mumford, “The optimum piston position for wide-band
coaxial-to-waveguide transducers,” Proc. IRE, vol. 41, pp. 256-261;
February, 1953.
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the conditions specified in our experimental procedure.

The application of Schelkunoff’s work which has been
used in previous radial-line filter design’ was investi-
gated.

Attention was called to the fact that radial-line co-
axial filters have a high return loss at frequencies well
below their resonant frequency which makes them par-
ticularly appropriate for circuits commonly occurring in
parametric work.

The waveguide harmonic filter shown in Fig. 11 has
been utilized in parametric amplifier work! and due to
its excellent signal performance has solved one of the
filtering problems associated with waveguide para-
metric amplifiers.

APPENDIX
The derivation of the minimum loss ratio in Ragan?

7 “The Microwave Engineers Handbook,” Horizon House—
Microwave Inc., Brookline, Mass., pp. TD-49; 1961-62.
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approximates relation (1) by
A= mla+0)

and then minimizes the coaxial-line loss subject to this
relation. It is perhaps comforting to know that if a
designer computes the multimoding limit of the sum
a+b from relation (1) and then picks some percentage
of this as a practical design limit (i.e., he will not work
exactly at the point of multimoding) that the condi-
tion (a+b) equal to a constant, when combined with
the minimum loss requirement, leads to exactly the
same ratio. Thus the minimum loss ratio becomes of
practical import.
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Periodic Cylinder Arrays as Transmission Lines®

JOSHUA SHEFERT, SENIOR MEMBER, IRE

Summary—Periodic structures of conducting cylinders have
been used as radiators (Yagi antennas), and, more recently, as slow-
wave lines in traveling-wave tubes and masers. In this report it is
shown that a nonresonant structure may have interesting capabilities
as an open surface-wave transmission line. By means of a relatively
simple matching network, efficient excitation of a surface wave on
the periodic line is obtained. Response is flat over a 20 per cent fre-
quency range at X band for several combinations of cylinder lengths
and spacings. Total insertion losses are less than 3 db and largely
independent of length of transmission line. Conducting cylinders are
embedded in styrofoam.

The effects of bends and twists in the line have also been investi-
gated. It is shown experimentally that a guided wave on this periodic
structure can follow a circular path having 1.5\ radius of curvature
with very little loss. The plane of polarization can be rotated 90° by
inserting a short twisted section.

By terminating the transmission line with short circuits at both
ends, a discrete series of transmission maxima is observed. Since
these resonant peaks of transmission are of high Q factor, the disper-
sion characteristic of the line is obtained with very good accuracy.

This type of open transmission line may offer advantages over
heavy-weight and bulky conventional waveguides for some special-
ized applications.

I. INTRODUCTION

NUMBER OF infinitely long periodic structures
theoretically support a propagating plane wave
along their axes.!2? In practice, the guiding

* Received July 17, 1962, This research was supported by AF
Cambridge Research Lab. under Contract AF(604)-4118 with Harvard
University. Revised manuscript received September 27, 1962.

t Bell Telephone Laboratories, Inc., Whippany, N. J. Formerly
with Gordon McKay Lab., Harvard University, Cambridge, Mass.

structures are of finite length, and any desired propagat-
ing mode has to be excited by a set of currents which can
neither be infinite in amplitude nor can they be dis-
tributed over an infinite aperture in space. Another
complication arises from the fact that the structure is
terminated and we have also the reflected wave to con-
sider. For these reasons, the performance one obtains
experimentally is often substantially different from theo-
retical predictions. However, quite useful approxima-
tions may be obtained, and in many cases one is in a
position to estimate the bounds of the error,

As a first step in calculating propagation character-
istics and excitation efficiency, it is essential to know
the field configuration of the wanted mode of propaga-
tion. These fields must be a solution to Maxwell's equa-
tions and must satisfy boundary conditions at the guid-
ing interface. At the exciting end these fields must, at
least approximately, match the fields impressed by the
launching device. For many periodic structures, it is
relatively straightforward to formulate the total field

1 F. D. Borgnis and C. H. Papas, “Electromagnetic waveguides,”
in “Encyclopedia of Physics,” vol. 16, Springer-Verlag, Berlin
Germany,: 1958. ’

2 L. Brillouin, “Wave guides for slow waves,” J. Appl. Phys., vol.
19, pp. 1023-1041; 1948.

#F. J. Zucker, “The guiding and radiation of surface waves,”
Proc. Symp. on Modern Advances in Microwaves Techniques, Poly-
technic Institute of Brooklyn, N. Y.; 1954.



